Класс!ная физика



Примеры решения задач по теме «Равномерное прямолинейное движение»

«Физика - 10 класс»

При решении задач по данной теме необходимо прежде всего выбрать тело отсчёта и связать с ним систему координат. В данном случае движение происходит по прямой, поэтому для его описания достаточна одна ось, например ось ОХ. Выбрав начало отсчёта, записываем уравнения движения.


Задача I.

Определите модуль и направление скорости точки, если при равномерном движении вдоль оси ОХ её координата за время t1 = 4 с изменилась от х1 = 5 м до х2 = -3 м.

Р е ш е н и е.

Модуль и направление вектора можно найти по его проекциям на оси координат. Так как точка движется равномерно, то проекцию её скорости на ось ОХ найдём по формуле

Отрицательный знак проекции скорости означает, что скорость точки направлена противоположно положительному направлению оси ОХ. Модуль скорости υ = |υх| = |-2 м/с| = 2 м/с.


Задача 2.

Из пунктов А и В, расстояние между которыми вдоль прямого шоссе l0 = 20 км, одновременно навстречу друг другу начали равномерно двигаться два автомобиля. Скорость первого автомобиля υ1 = 50 км/ч, а скорость второго автомобиля υ2 = 60 км/ч. Определите положение автомобилей относительно пункта А спустя время t = 0,5 ч после начала движения и расстояние I между автомобилями в этот момент времени. Определите пути s1 и s2, пройденные каждым автомобилем за время t.

Р е ш е н и е.

Примем пункт А за начало координат и направим координатную ось ОХ в сторону пункта В (рис. 1.14). Движение автомобилей будет описываться уравнениями

x1 = х01 + υ1xt, x2 = х02 + υ2xt.

Так как первый автомобиль движется в положительном направлении оси ОХ, а второй — в отрицательном, то υ1x = υ1, υ2x = —υ2. В соответствии с выбором начала координат х01 = 0, х02 = l0. Поэтому спустя время t

x1 = υ1t = 50 км/ч • 0,5 ч = 25 км;

х2 = l0 — υ2t = 20 км - 60 км/ч • 0,5 ч = -10 км.

Первый автомобиль будет находиться в точке С на расстоянии 25 км от пункта А справа, а второй — в точке D на расстоянии 10 км слева. Расстояние между автомобилями будет равно модулю разности их координат: l = |х2 - x1| = |—10 км - 25 км| = 35 км. Пройденные пути равны:

s1 = υ1t = 50 км/ч • 0,5 ч = 25 км,

s2 = υ2t = 60 км/ч • 0,5 ч = 30 км.


Задача 3.

Из пункта А в пункт В выезжает первый автомобиль со скоростью υ1 Спустя время t0 из пункта В в том же направлении со скоростью υ2 выезжает второй автомобиль. Расстояние между пунктами A и В равно l. Определите координату места встречи автомобилей относительно пункта В и время от момента отправления первого автомобиля, через которое они встретятся.

Р е ш е н и е.

Примем пункт А за начало координат и направим координатную ось ОХ в сторону пункта В (рис. 1.15). Движение автомобилей будет описываться уравнениями

x1 = υ1t, х2 = l + υ2( t - t0).

В момент встречи координаты автомобилей равны: х1 = х2 = хв. Тогда υ1tв = l + υ2( tв - t0) и время до встречи

Очевидно, что решение имеет смысл при υ1 > υ2 и l > υ2t0 или при υ1 < υ2 и l < υ2t0. Координата места встречи


Задача 4.

На рисунке 1.16 представлены графики зависимости координат точек от времени. Определите по графикам: 1) скорости точек; 2) через какое время после начала движения они встретятся; 3) пути, пройденные точками до встречи. Напишите уравнения движения точек.

Р е ш е н и е.

За время, равное 4 с, изменение координаты первой точки: Δx1 = 4 - 2 (м) = 2 м, второй точки: Δх2 = 4 - 0 (м) = 4 м.

1) Скорости точек определим по формуле υ1x = 0,5 м/с; υ2x = 1 м/с. Заметим, что эти же значения можно было получить по графикам, определив тангенсы углов наклона прямых к оси времени: скорость υ1x численно равна tgα1, а скорость υ2x численно равна tgα2.

2) Время встречи — это момент времени, когда координаты точек равны. Очевидно, что tв = 4 с.

3) Пути, пройденные точками, равны их перемещениям и равны изменениям их координат за время до встречи: s1 = Δх1= 2 м, s2 = Δх2 = 4 м.

Уравнения движения для обеих точек имеют вид х = х0 + υxt, где х0 = x01 = 2 м, υ1x = 0,5 м/с — для первой точки; х0 = х02 = 0, υ2x = 1 м/с — для второй точки.


Источник: «Физика - 10 класс», 2014, учебник Мякишев, Буховцев, Сотский




Кинематика - Физика, учебник для 10 класса - Класс!ная физика

Физика и познание мира --- Что такое механика --- Механическое движение. Система отсчёта --- Способы описания движения --- Траектория. Путь. Перемещение --- Равномерное прямолинейное движение. Скорость. Уравнение движения --- Примеры решения задач по теме «Равномерное прямолинейное движение» --- Сложение скоростей --- Примеры решения задач по теме «Сложение скоростей» --- Мгновенная и средняя скорости --- Ускорение --- Движение с постоянным ускорением --- Определение кинематических характеристик движения с помощью графиков --- Примеры решения задач по теме «Движение с постоянным ускорением» --- Движение с постоянным ускорением свободного падения --- Примеры решения задач по теме «Движение с постоянным ускорением свободного падения» --- Равномерное движение точки по окружности --- Кинематика абсолютно твёрдого тела. Поступательное и вращательное движение --- Кинематика абсолютно твёрдого тела. Угловая скорость. Связь между линейной и угловой скоростями --- Примеры решения задач по теме «Кинематика твёрдого тела»



Устали? - Отдыхаем!

Вверх